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Abstract—Websites routinely distribute small amounts of work
to visitors’ browsers in order to validate forms, render anima-
tions, and perform other computations. This paper examines the
feasibility, cost effectiveness, and approaches for increasing the
workloads offloaded to web visitors’ browsers in order to turn
them into a large-scale distributed data processing engine, which
we term gray computing. Past research has looked primarily
at either non-browser based volunteer computing or browser-
based volunteer computing where the visitors keep their browsers
open to a single web page for a long period of time. This paper
provides a deep analysis of the architectural, cost effectiveness,
user experience, performance, security, and other issues of
gray computing distributed data processing engines with high
heterogeneity, non-uniform page view times, and high computing
pool volatility.

I. INTRODUCTION

Every website visitor does some computational work on the

website’s behalf, such as validating input values of a web form

before submission to the server, harvesting information related

to the client’s browser, animating page elements, or displaying

complex data analytics. Website visitors implicitly opt-into

performing computational work for the website owner without

knowing exactly what work their browsers will perform. The

line between what computational tasks should or should not be

offloaded to the visitor’s browser is not clear cut and creates

a blurred boundary, which we term gray computing. The only

hard line defining acceptable and unacceptable computing

tasks is drawn by the security controls in the browser that

protect the user from malicious logic.

The successful offloading of smaller tasks, such as form

validation, motivates the question of whether or not there is po-

tential to perform more computational work in this gray com-

puting area of website visitors’ browsers. Previously, browser-

based JavaScript applications were single-threaded, preventing

complex calculations from being performed without the user’s

knowledge since they would directly impact user interaction

with the web page. The emergence of new standards, such as

Web Workers, which allow background JavaScript threads

on web pages, offer the potential for much more significant

background usage of visitor’s computing resources without

their knowledge, which motivates the study of this new gray

computing power.

For example, big data processing [1], where organizations

process website visitor logs, user photos, social network

connections, and other large datasets for meaningful infor-

mation has become commonplace for large websites. Could

organizations offload these big data processing tasks to client

web browsers in background JavaScript threads? How much

computational power could be harnessed in this type of model,

both for computations directly beneficial to the web visitor,

such as product recommendations, as well as for attackers that

compromise a website?

There are clearly significant privacy and ethical questions

around this concept of gray computing, but before deeply

exploring them, it is important to ensure that there is actually

significant potential computational value in gray computing.

For example, if the costs, such as added load to the webserver

or reduced website responsiveness, reduce web traffic, then

clearly gray computing will not be exploited. Further, if the

computational power of browsers is insignificant and can not

perform sufficient work to outweigh the outgoing bandwidth

costs of the data transferred to clients for processing, then no

user incentives or other models to entice users into opting into

computationally demanding tasks will be feasible.

Scientists have effectively applied volunteer computing [2],

which is a distributed computing paradigm in which computer

owners donate their computing resources to research projects,

to reduce costs and increase their computing power. Volunteer

computing differs from gray computing in that volunteers

typically directly opt-in by installing a client and have ful-

l knowledge of the computational tasks that they will be

performing. Code obfuscation techniques, such as JavaScript

minimization, typically make web visitors unaware of the

computational tasks that they are performing on behalf of a

website. Moreover, few website visitors look at the source

code of webpages that they are visiting in order to determine

the computational work their browsers are performing.

How much gray computing power is currently untapped?

As we will show from empirical results presented in this

paper, there is significant untapped gray computing power.

For example, over 6 billion hours of video are watched each

month on YouTube [3]. Assume that each client computer

has an average processing ability of 50 GFLOPS, which

is equivalent to an Intel i3 2100 [4]. Further assume that

each client computer is only 25% utilized by gray big data

computing tasks offloaded by YouTube, such as the client-

side face detection task we present in Section IV-B. The



combined processing power of the client computers would be

104 PFLOPS. Tianhe-2, the fastest super computer on record

till June 2014, has a computing speed of 33.86 PFLOPS [5]. In

this example, the combined processing power of the monthly

web visitors to YouTube is ≈3X the largest supercomputer

in the world. Even if the true gray computing power is only

1/100 of this estimate, the processing power would still make

gray computing among the TOP50 fastest super computers in

the world [5].

Open Question ⇒ Is it feasible and cost-effective to

build a gray computing data processing infrastructure

using website visitors’ browsers? Although prior research on

volunteer computing has investigated browser-based volunteer

computing engines, past research has focused on scenarios

where website visitors keep specialized web pages open for

long periods of time. The prior research has not considered the

cost effectiveness of building browser-based distributed data

processing engines with gray computing or gray computing’s

impact on the user experience of a normal website. If gray

computing can be done in a manner that is both cost-effective

and does not impact user browsing experience, it warrants

both significant concern and study. A number of key research

challenges exist toward adopting gray computing that stem

from the volatility, security, user experience considerations,

and cost of performing distributed data processing with gray

computing. This paper does not investigate the ethical and

privacy concerns of gray computing in depth, but instead aims

to determine if gray computing is an appealing enough target

for both legitimate website operators and attackers to warrant

further research into these issues.

This paper presents an architectural solution which ad-

dresses these research challenges and proves the feasibility

of performing distributed data processing tasks with gray

computing. There is a need for further study on the importance

of the security, ethical, and other considerations of this type of

computing resource utilization. To prove the feasibility of the

gray computing concept, we built, empirically benchmarked,

and analyzed a variety of browser-based distributed data

processing engines for different types of gray computing tasks,

ranging from facial recognition to rainbow table generation.

We analyzed the computational power that could be harnessed

both for valid user-oriented concerns, as well as by cyber-

attackers. The same experiments were performed using Ama-

zon’s cloud services for distributed data processing in order to

compare the performance and cost of gray computing to cloud

computing.

Contributions: Although there are several past implementa-

tions [6] of browser-based distributed data processing engines,

past work has not investigated the potential for more signifi-

cant usage of website visitor computing resources with back-

ground JavaScript threads. This paper’s main contributions,

which differentiate it from previous work, are as follows:

• A complete architecture for gray computing is provided

that improves cost-effectiveness by exploiting asymme-

tries in cloud pricing models.

• Experiments are presented that investigate the impact on

user experience of popular websites, such as Facebook.

• Past research treated the computing resources of browser

clients as free. The additional cost/load on the network

and server when distributing data processing tasks to

browser clients is considered in this work and shown to

be a critical component of determining which tasks are

cost-effective to use for gray computing.

• This paper considers more realistic browsing behavior

versus past approaches that assumed the browser was

open for long periods of time and did not consider

situations where the user was only doing computation

while a visitor was reading web pages on a site.

• A variety of real-world distributed data processing appli-

cations, ranging from computer vision to machine learn-

ing, are benchmarked and assessed for cost-effectiveness

with gray computing.

The remainder of this paper is organized as follows: Sec-

tion II presents the key research challenges investigated in this

paper; Section III presents our proposed solutions to address

these challenges and the corresponding empirical verifications;

Section IV examines some practical applications of distributed

data processing with gray computing and analyzes their suit-

ability for this computing model; Section V describes related

work; Section VI presents concluding remarks and future

work.

II. RESEARCH QUESTIONS

In order to determine if it is feasible to tap into gray

computing, a number of key research questions need to be

addressed:

Question 1: Does JavaScript provide sufficient perfor-

mance for computationally intensive tasks?

Question 2: Does gray computing impact website per-

formance in a user perceptible manner?

Question 3: What are the mechanisms for handling

malicious clients and how will they impact gray computing

performance?

Question 4: How cost-effective is gray computing versus

commodity public clouds?

Question 5: How do you effectively allocate tasks to

clients with unknown page view times?

The remainder of this paper presents the results of experi-

ments and analyses that we performed to answer each of these

key questions. As will be shown, there are practical solutions

to the challenges of gray computing and it can be a cost-

effective approach to perform a number of complex tasks, such

as image processing.

III. ANSWERING THE RESEARCH QUESTIONS

To answer the key research questions, we built an imple-

mentation of a distributed data processing engine that can

tap gray computing power, benchmarked it, and performed

cost/performance analysis on a variety of different data pro-

cessing tasks. We set out to build the most optimized gray

computing engine that we could design to ensure that our



cost/benefit analyses were realistic. Initially, we used past

research on volunteer computing to guide our gray computing

architecture [6], [7], [8], but found a number of architectural

assumptions in volunteer computing that did not hold in gray

computing hosted in cloud-based websites. In particular, we

found architectural issues discussed in prior work, such as

mismatches between past architectures and cloud computing

pricing, that we sought to address.

Our design focused on optimizing the gray computing

distributed processing engine architecture for websites served

out of cloud computing environments, such as Amazon EC2.

Based on our analysis of the architectures used in past re-

search [6], [7], [9], the key architectural limitations of past

research when applied to a cloud computing environment are

as follows:

• Prior approaches assume a fixed sunk cost for the

computing time of the task distribution server. In a

cloud computing environment, the cost of the computing

time for the task distribution server is not fixed and

scales with load. Therefore, past architectures need to be

reassessed to minimize the distribution server load and

decrease cost. Otherwise, gray computing is less cost-

effective.
• Pricing asymmetry of cloud computing resources can

be exploited to reduce gray computing costs. For

example, Amazon S3 and Microsoft Azure only charge

for data transfer out of their storage services and not

data transfers into their storage services. Prior work did

not optimize the data distribution and results reporting

architectures to take advantage of pricing asymmetry.
• Task distribution servers were reported as the bot-

tleneck in some prior work [9]. The load on task

distribution servers can be substantially reduced by of-

floading data distribution to content delivery networks,

which provide better cost/performance ratios than serving

the same data out of a cloud-based server.
• All results were reported directly back to the task

distribution server in prior work. Server load can

be reduced by allowing browser-based clients to bypass

the task distribution server and directly write results to

cloud-based storage using a temporary URL authorization

model, such as the one provided by Amazon S3.

To address the architectural issues described above, we de-

veloped a novel architecture for browser-based data processing

engines hosted out of cloud computing environments, such

as Amazon EC2. Our architecture was focused on providing

websites with a MapReduce interface to gray computing,

which is commonly used for data processing tasks [1].

To reduce the workload of the task distribution server,

we utilize the cloud provider’s storage service to serve data

for computing directly out of the storage service. The task

distribution server is only responsible for determining what

tasks should be given to a client. The task distribution server

handles HTTP GET requests and responds with a JSON-based

string containing the task ID and data location URL for each

task. Each client calls the API once before working on an

individual task. Our empirical analysis shows a relatively small

workload is added to the task distribution server and the cost

is negligible.

Besides reducing the workload of the task distribution

server, serving data directly out of the cloud-based storage

server also exploits the pricing asymmetry in cloud storage

services. In Amazon S3 and Microsoft Azure, only outbound

data transfer is charged. Data transferred into the storage

service is free. This means clients can report the results of

computations directly to the storage service for free. This setup

allows the data processing engine to reduce bandwidth costs.

Since the clients are highly volatile and typically only

have short page view times, improving data transfer speeds

is critical to the overall performance. It is essential to max-

imize the time that clients spend executing computational

tasks and minimize the time spent waiting for input data.

One optimization that has been applied in our architecture

is the use of a Content Delivery Network (CDN). Instead

of serving the input data through a single storage server, a

CDN works by serving the content with a large distributed

system of servers deployed in multiple data centers in multiple

geographic locations. Requests for content are directed to the

nodes that are closest and have the lowest latency connection

to the client. Take Amazon’s CDN service CloudFront as an

example. The original version of the data is stored in an origin

server, such as S3. Amazon copies the data and produces

a CDN domain name for the data. The clients request the

data using the CloudFront domain name and CloudFront will

determine the best edge location to serve the contents. An

overview of this proposed architecture is shown in Figure 1.

In order to manage and coordinate the computational tasks,

we built a cloud-based task distribution server using Node.js

and the Express framework. The task distribution server par-

titions the data into small chunks and assigns them to clients

for processing. We use Amazon S3 as our storage server to

store input data for clients and receive results from clients.

An EC2 server is used to subdivide the tasks and maintain

a task queue to distribute tasks to clients. In our proposed

architecture, tasks are distributed to clients as follows:

1) The client requests an HTML webpage from the server.

2) The server injects an additional JavaScript file into the

webpage that includes the data processing task.

3) A JavaScript Web Worker, which executes in a back-

ground processing thread after the page is fully loaded, is

used to perform the heavy data processing computation

without impacting the foreground JavaScript rendering.

4) The client sends AJAX HTTP requests to retrieve the

input data from the CDN. Once it receives the input

data, it runs a map or/and reduce function on the data.

5) The client issues an HTTP PUT or POST of the re-

sults directly back to the cloud storage server. After

submitting the results, the Web Worker messages the

main thread to indicate completion. Upon receipt of this

message, the main thread sends a new HTTP request to

fetch another data processing task from the server.
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Fig. 1: Architecture of the proposed distributed data processing engine for

gray computing.

A. Answering Question 1 ⇒ Benchmarking JavaScript Per-

formance on Computationally Intensive Tasks

1) Current JavaScript performance: Popular browsers such

as Chrome, Firefox, and Safari have made great efforts to

optimize their JavaScript computing engines and have pro-

duced significant increases in JavaScript computational speed.

Further, a variety of highly optimized tools have been devel-

oped to automatically port C/C++ programs to JavaScript. Em-

scripten [10] is an LLVM (Low Level Virtual Machine)-based

project that compiles C/C++ code into highly-optimizable

JavaScript in the asm.js format. Entire C/C++ code bases, such

as the Unity 3D gaming engine and the ffmpeg video process-

ing library have been ported to JavaScript with Emscripten.

Emscripten works by first compiling C/C++ code through

Clang [11] into an intermediary representation in LLVM. It is

claimed the optimized JavaScript code can achieve near native

performance to C++ code. We conducted some benchmark

experiments to analyze the performance of the JavaScript

produced by Emscripten. The results are quite startling: the

ported JavaScript codes significantly outperformed the hand-

written JavaScript code, and were within 2X performance of

the original native C++ code.

TABLE I: EXECUTION TIME COMPARISON OF NATIVE C++, NATIVE

JS, AND PORTED JS (FROM C++). JAVASCRIPT IS RUNNING WITH V8

JAVASCRIPT ENGINE 3.27.

Benchmark C++ native JS ported JS
Nbody 6.6s 16.9s 6.2s
fasta 1.3s 11.4s 2.1s

Table I presents the results from the comparison be-

tween native C++ code, hand-written JavaScript code, and

ported JavaScript code using Emscripten. The hand-written

JavaScript code is written with the same algorithm as the

C++ version. The ported JavaScript code is produced using

Emscripten 1.2.0 with the “-O3” optimization flag. The C++

code was compiled using LLVM gcc 5.0 with the “-O3”

optimization parameter. The reason for the performance boost

is that Emscripten uses asm.js, which is a highly optimized

low-level subset of JavaScript. The types in JavaScript are

implicitly declared and thus take time for large applications

to decide at runtime. Asm.js utilizes typed arrays for speed

improvements. It also eliminates JavaScript’s object-oriented

constructs and thus eliminates many hard-to-optimize code

constructs.

B. Answering Question 2 ⇒ Benchmarking Background Web

Worker Computational Task Impact on User Experience

One concern with deploying gray computing to websites

is whether the background computing tasks will affect the

website’s foreground user interaction tasks. Gray computing

will be of little interest to website owners and visitors if the

computing tasks affect the user experience heavily.

Web Workers is a new feature introduced in HTML5, which

can create a separate JavaScript thread in the background.

Using Web Workers, background computing tasks and fore-

ground rendering / user interaction tasks can run in separate

threads, allowing the main JavaScript needed to render the

page and validate forms to run unimpeded without affecting

user experience.

To test whether doing computationally intensive tasks in

the background will affect the user experience, we conducted

experiments with Greasemonkey [12] to inject data processing

tasks into popular websites. Greasemonkey is a browser exten-

sion which allows users to install scripts that make on-the-fly

changes to web page content before or after the web page is

loaded in the browser.

The first concern regarding user experience is page load

time. However, Web Workers spawn threads in the onload()

function of a web page, which is executed only after the

HTML page finishes loading. Background Web Worker threads

can be run without affecting page load time.

The second concern is the page responsiveness. Many met-

rics exist for page responsiveness. In this project, we choose

the search box item suggestion (or auto-completion), which

is a pervasive and time-critical feature of many websites, for

the user experience evaluation. Search box auto-completion

is a time critical task since auto-completion results must be

computed faster than the user types in order to be helpful. Our

aim was to test if the generation of search suggestions would

be slowed down by a computationally intensive background

task. Two scripts were written in Greasemonkey. Script 1 was

setup to inject a search term into the search bar and record how

long it took for the web page’s foreground client JavaScript

to generate the search result HTML elements and produce

a baseline time for comparison. Script 2 spawned a Web

Worker to perform a computationally intensive task required

by the applications we proposed in Section IV, such as face

recognition and image scaling, and then injected the search

terms. The time to generate auto-completion suggestions while

running the computationally intensive background tasks was

measured. We compared the time to generate the search

suggestions with and without the Web Worker task to see if

the background computation would impact the user experience

on a number of popular websites.

We used 50 different keywords as search inputs and for

each keyword we ran 100 trials and averaged the load times.

As the results shown in Table II illustrate, there was no

discernible difference in the search suggestion load time with



and without a Web Worker computational task running. The

results show that background gray computing tasks would not

be easily discernible by the user – causing both alarm due

to the potential for misuse and potential for distributed data

processing.

TABLE II: AVERAGE SEARCH BOX HINT RESULTS GENERATION TIME (T)

AND CPU UTILIZATION.

Website With Web Worker Without Web Worker
T Avg. CPU util T Avg. CPU util

Twitter 0.58s 56% 0.59s 12%
Wikipedia 0.47s 58% 0.46s 15%

Gmail 0.75s 55% 0.73s 11%

C. Answering Question 3 ⇒ Mechanisms for Handling Mali-

cious Clients and their Associated Overhead

Since clients in a gray computing distributed data processing

engine are not guaranteed to be trustworthy, it is possible that

the results returned from them can be fraudulent. A simple

but effective approach to handle malicious clients it to use a

task duplication and majority voting scheme. More complex

strategies, such as credibility-based approaches, exist but are

not necessarily a good fit for the highly-volatile browser-

based data processing environment. Many visitors may access

a website only once and the website may have no history

statistics to derive their visitor reputation scores. Suppose the

overall application consists of n divisible task units. There

are C concurrent clients and among them, M are malicious

clients, which will send falsified results. f = C/N is the

fraction of malicious clients in total clients. Our duplication

approach works by assigning identical task units to k different

clients and verifying the results returned from different clients.

If the computation results from different clients are the same,

then the result will be accepted. If not, a majority voting

strategy is applied and the result from the majority of clients

is accepted. Notice that the server randomly distributes tasks

to clients, while ensuring no client receives both a task and

its duplicate and that clients have no control over which task

units they will get. The duplication approach fails only when

a majority of a task’s duplications are sent to a collaborative

group of malicious clients.

Error Rate: The error rate ǫ is defined as the fraction of

the final accepted results that are malicious. As described by

Sarmenta et al. [13], the error rate can be given by:

ǫ =

2d−1
∑

j=d

(

2d− 1

j

)

f j(1− f)(2d−1−j) (1)

where d is the minimum number of matching results needed

for the majority voting scheme. For example, for d = 2, the

server accepts a result when it gets two identical results. When

the server gets two different results, it keeps reassigning the

task until 2 identical results are received. Redundancy, R, is

defined as the ratio of the number of assigned task units to the

number of total task units. It can be proved that R = d/(1−f).
Although simple, the duplication approach is robust even

with small d. For large websites with millions of visitors, it is

difficult for attackers to gain control over a large portion of the

clients. Suppose a hacker has a botnet of a thousand machines,

f = 0.001 for a website with a million total clients. As shown

in Figure 2, even with d = 2, we can ensure 99.9999% of

all the accepted results are correct. The choice of d is also

dependent on the type of application. Some applications are

generally less sensitive and even no duplication is acceptable

since the falsified results do little harm.
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Fig. 2: Error rates for different parameter values of d and f.

D. Answering Question 4 ⇒ A Cost Model for Gray Comput-

ing

Another challenge that must be dealt with is the cost-

effectiveness of gray computing. To assign tasks to a large

number of browser clients, a coordinating server is needed

to send the input data to clients and collect the computing

results from them. The extra data transferred, in addition to

the original web page, will consume additional bandwidth and

processing power of the server. It is possible that this extra

cost can be more than the value of the results computed by

the clients for some types of applications. Therefore, we need

a cost model to help developers decide whether it is cost-

effective to deploy an application through gray computing

and estimate the cost savings. In our cost model, we choose

cloud computing services as our benchmark. We chose to

compare against cloud computing because cloud computing

has a quantifiable computing cost that we can compare against.

For our gray computing distributed data processing engine,

the cost can be broken down as:

Cbrowser = Ctransfer + Crequest + Cdistribute

= Ctoclient + Ctoserver + Crequest + Cdistribute

≈ Ctoclient + Ctoserver + Crequest (2)

Ctransfer is the data transfer cost calculated on volume of

data; Crequest is the HTTP request cost incurred based on the

number of GET or POST requests; Cdistribute is the virtual

compute units consumed by task distribution. We have shown

in our empirical analysis that Cdistribute is nearly zero for our

architecture because the data is served directly out of the cloud

storage service and the task distribution server only needs to

do a small amount of work.

Ctransfer can be further broken down into Ctoclient and

Ctoserver.



Ctoclient = k × I × Ptransferout

= k × I × (POriginToCDN + PCDNout)

Ctoserver = O × Ptransferin

= O × (PtoCDN + PtoOrigin) (3)

Ctoclient is the cost to fetch input data for computing from

an S3 storage server; I is the original size of input data to

be transferred to clients for processing; POriginToCDN is the

unit price to transfer data from an origin server (S3 in our

case) to CDN servers (CloudFront in our case); PCDNout is

the unit price to transfer data from CDN servers to the clients.

Ctoserver is the cost to return computation results from clients

to the storage server; O is the size of data to be returned;

PtoCDN is the unit price to transfer data from clients to CDN

servers and PtoOrigin is the unit price to transfer data from

CDN servers to the origin server.

The actual data transferred from server to client will be

more than the original size of input data I . One reason is as

described in Section III-C, the same task needs to be sent to

d different clients to be robust to malicious clients. Another

reason is the clients may leave before the computation finishes.

The data transferred to these clients is wasted. The actual vol-

ume of data transferred out will be k times the data needed for

one copy of the task, where k = d+
∑

∞

n=1 d(1−µ)n = d/µ.

d is the duplication factor. The variable µ is the successful

task completion ratio of browser clients (i.e., the percentage

of distributed tasks that are successfully processed before a

browser client leaves the site).

In Section III-E, we discuss the estimation of value µ and its

relationship with average page view duration, task granularity,

and task distribution algorithms.

Crequest = (k + d)× n× Prequest (4)

n is the number of tasks that need to be processed. Prequest is

the unit price of HTTP requests to the CDN server. For each

task distribution session, the client needs one HTTP request

to fetch the data and one HTTP request to return the results.

Since each task needs to be duplicated d times and not all

the tasks are completed successfully, more fetch requests are

needed than return requests. That is, kn requests to fetch input

data and dn requests to return the results.

The cost to run the tasks in the cloud is given by Ccloud:

Ccloud = Tcloud × I × Punit (5)

where Punit is the cost per hour of a virtual compute unit.

For example, Amazon provides an “ECU” virtual computing

unit measure that is used to rate the processing power of each

virtual machine type in Amazon EC2. Virtual compute units

are an abstraction of computing ability. Tcloud is the computing

time to process 1 unit of data with one virtual compute unit

in the cloud.

The proposed distributed data processing engine built on

gray computing is only cost effective when:

Ccloud > Cbrowser (6)

That is, the cost to distribute and process the data in the

browsers must be cheaper than the cost to process the data

in the cloud.

Tcloud × I × Punit > k × I × (POriginToCDN + PCDNout)

+O × (PtoCDN + PtoOrigin)

+ (k + d)× n× Prequest

(7)
Since prices are all constant for a given cloud service provider,

the key parameters here are Tcloud, which can be computed

by a benchmarking process, and k, which can be computed

based on the voting scheme for accepting results and average

page view time of clients.

The cost saving U is defined as:

U = Ccloud − Cbrowser (8)

A positive U indicate an application is suitable for gray

computing.

E. Answering Question 5 ⇒ An Adaptive Scheduling Algo-

rithm for Gray Computing

The clients in gray computing are website visitors’ browser-

s, which are not static and unreliable. The clients join and

leave the available computational resource pool frequently.

The result is that a client may leave before its assigned

computational task is finished, adding extra data transfer

and producing no computational value. We define µ as the

successful task completion ratio. The value of µ is important

and directly influences the cost of gray computing. The higher

µ is, the less data transferred is wasted, and thus more cost-

effective gray computing will be.

There are two factors affecting the successful task com-

pletion ratio µ: the page view duration of the client and the

computing time of the assigned task. The relationship between

µ, average page view duration and task sizes is depicted in

Figure 3. Assume assigned task size is proportional to the

computing time needed. For a fixed task chunk size, the longer

the page view duration, the fewer chances the client will leave

before the computation completed. The distribution of the page

view durations of a website’s clients is determined by the

website’s own characteristic. But the computing time of the

assigned tasks is what we can change. Assume the whole

application can be divided into smaller chunks of arbitrary

size. Reducing the single task size assigned to the clients will

increase the task completion ratio, but result in more task units.

More task units means more cost on the requests to fetch data

and return results. Therefore, there is a tradeoff between using

smaller tasks and larger tasks.

Instead of treating all the clients as the same and assigning

them tasks of the same size, we developed an adaptive

scheduling algorithm. We utilize the fact that website visitors’

dwell time follows a Weibull distribution [14], [15]: the prob-

ability a visitor leaves a web page decreases as time passes.

This implies most visits are short. Our adaptive scheduling

algorithm works by assigning tasks of smaller size to clients

first and increasing the subsequent task sizes until a threshold
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Fig. 3: The relationship between average dwell time and successful task

completion ratio µ for different task sizes.

is reached. In this way, we achieve higher successful time

completion ratio than fixed task size while also reducing the

number of task requests.

For comparison, we also implemented a Hadoop scheduler.

The Hadoop scheduler works as follows: The entire job

is partitioned into task units of the same size. The server

maintains a queue of tasks to assign. When a client connects

to the server, the server randomly selects a task from the queue

and assigns it to the client. If a task fails, the failed task will be

pushed onto the back of the queue and wait to be reassigned

to other clients.

To derive µ values for the schedulers, we ran simulations

in Matlab with varying average page view times and task

durations. We assumed the page view duration follows a

Weibull distribution with average page view duration equal

to Tapv . We used a duplication factor of d = 2 for a voting

scheme that required 2 matching results. The results are shown

in Table III. We can see that 1) µ increases as the average

page view time increases (i.e., the successful task completion

rate goes up), and 2) The adaptive scheduler achieves higher

µ and faster task completion times compared to the Hadoop

scheduler.

TABLE III: COMPARISON OF DIFFERENT SCHEDULERS IN TERMS OF TASK

COMPLETION SUCCESS RATIO µ.

Average page view duration µ

Scheduler 30s 1min 2min 3min
Hadoop 0.80 0.85 0.88 0.90
Adaptive 0.84 0.88 0.92 0.93

IV. EXAMPLES OF GRAY COMPUTING APPLICATIONS

In this evaluation section, we examine some practical ap-

plications of distributed data processing with gray computing.

We compute the cost saving U for each application to find

out which applications are cost-effective in a gray computing

model.

A. Experiment Environment

Browser client: We used a desktop computer for our exper-

iments with an Intel Core i5-3570 CPU clocked at 3.5GHz and

8GB of memory. The computational tasks were implemented

in JavaScript and run on Chrome 39.0.

Cloud instance: We use an Amazon EC2 m3.medium

instance (ECU=3) and Ubuntu 14.04 64bit operating system

for benchmarking cloud data processing performance.

Price for cloud computing: See Table IV and V. Punit =
$0.07/hour. We choose a duplication factor d = 2 for most

use cases, because it guarantees a relatively high accuracy as

we have shown in Section III-C. We also choose a conservative

successful task completion ratio of µ = 0.8, which is repre-

sentative of the Hadoop scheduler efficiency with an average

page view time of roughly 30s.

We compute the cost saving: U = Tcloud × I × Punit −
Ctoclient−Ctoserver −Crequest for each task as shown in Ta-

ble VI. A data processing task is cost-effective for distributed

processing with browsers if the U is a positive number.

TABLE IV: A SUBSET OF AMAZON CLOUD SERVICE TYPE AND PRICE

(AS OF FEBRUARY 2015)

Service Subtype Price ECU
EC2 t2.micro $0.013 /Hr varied

m3.medium $0.07 /Hr 3
m3.large $0.14 /Hr 6.5
c3.large $0.105 /Hr 7

TABLE V: A SUBSET OF AMAZON CLOUD SERVICE TYPE AND PRICE

(AS OF FEBRUARY 2015)

Service Subtype Price
S3 Transfer IN To S3 Free

S3 to CloudFront Free
CloudFront To Origin $0.02/GB

To Internet (First 10TB) $0.085/GB
To Internet (Next 40TB) $0.08/GB
To Internet (Next 100TB) $0.06/GB
To Internet (Next 350TB) $0.04/GB

HTTP requests $0.0075/per 10000

B. Use Cases

Scenario 1: Face detection

Overview. For the first gray computing case study, we chose

face detection, which is a data processing task that Facebook

runs at scale on all of its photo uploads to facilitate user

tagging in photos. Face detection is a task that most Facebook

users would probably consider to be beneficial to them. Face

detection also has an interesting characteristic in that it can

be run on the data that is already being sent to clients as part

of a web page (e.g., the photos being viewed on Facebook).

Notice in our cost model, a large portion of the cost comes

from sending input data from the server to clients. This cost

becomes prohibitively expensive for data intensive tasks. Data

transfer costs appear inevitable, since it is impossible for the

TABLE VI: COMPARISON OF COST SAVING PER GB FOR DIFFERENT TASKS.

THE HIGHER THIS VALUE, THE MORE COMPUTATIONALLY INTENSIVE THE

TASK, AND THE MORE SUITABLE THE TASK FOR DISTRIBUTED DATA PRO-

CESSING WITH BROWSERS.

Task Cost savings $ per GB
Rainbow table ∞

Face detection 0.09
Sentiment analysis 0.07

Image scaling 0.008
Word count -0.16



clients to compute without input data. However, there are

some circumstances that the input data needs to be sent to

the client anyway, such as when the data is an integral part

of the web page being served to the client. In these cases, no

extra data transfer costs are incurred. Facebook has 350 million

(as of 2013) photos uploaded every day and face detection

in photos is a relatively computationally intensive computer

vision task. Our hypothesis was that significant cost savings

could be obtained through gray computing.

Experiment Setup. To test whether offloading face detec-

tion tasks to gray computing is cost-effective, we conducted

experiments for face detection tasks on both JavaScript in the

browser and OpenCV, which is a highly optimized C/C++

computer vision library, in the cloud. For the JavaScript facial

detection algorithm, we used an opensource implementation of

the Viola-Jones algorithm [16]. For the Amazon cloud com-

puting implementation, we use the same algorithm but a high

performance C implementation from OpenCV 2.4.8. There are

more advanced face detection algorithms that achieve better

accuracy but need more computing time, which would favor

browser-based data processing.

Empirical Results. The results of the experiment are shown

in Table VII. We can see that the computation time is approxi-

mately linear to the total number of pixels or image size. This

result is expected because Viola-Jones face detection uses a

multi-scale detector to go over the entire image, which makes

the search space proportional to the image dimensions.

Analysis of Results. Facebook has 350 million photos

uploaded by users each day. Suppose the average resolution

of the photos being uploaded is 2 million pixels, which is

less than the average resolution of most smartphone cameras,

such as the 8 million pixel (8 megapixel) iPhone 6 camera.

It takes 1.7s × 3.5 × 108/3600h = 165, 278h of computing

time for an EC2 m3.medium instance to process these photos.

With our utility function U = Tcloud × I × Punit − 1/µ ×
d × I × Ptransferout − O × Ptransferin − Crequest, where

Ptransferout = 0 because the photos already exist in clients so

there is no additional cost for transferring data to the clients.

For each photo, the returned computing result should be an

array of coordinations of rectangles, which is rather small,

so O can be ignored. The client does not need to fetch the

photos only needs to issue one HTTP request to return the

results. We assume the client processes 5 photos at a time

(which takes around 7s on a browser with average hardware).

We choose a duplication factor d = 1 since this application is

not very sensitive to security. Thus, Crequest = 350×108/5×
0.0075/104 = 5250, and U = 165278×0.07−5250 = $6319
could be saved each day by distributing this task to browser

clients rather than running it in Amazon EC2. That is a

yearly cost savings of roughly $2.3 million dollars. The actual

algorithm Facebook uses is likely to be more complex than the

algorithm we used and a larger Tcloud is expected. Therefore,

the cost savings could be even larger than we calculated.

Scenario 2: Image Scaling

Overview. Another example of a useful gray computation

that can be applied to data already being delivered to clients

is image scaling. Websites often scale image resources, such

as product images, to a variety of sizes in order to adapt them

to various devices. For instance, desktop browsers may load

the image at its original size and quality, while mobile clients

with smaller screens may load the compressed image with

lower quality. The Amazon Kindle Browser talks directly to

EC2 rather than target websites and receives cached mobile-

optimized versions of the site and images that are produced

from large-scale image processing jobs.

We can offload image compression tasks to gray computing.

Similar to Scenario 1, the photos are already being delivered

to the clients, so there is no added cost for transferring data

from the server to clients. After loading the images, each client

will do the scaling and compression work and then send the

scaled images for mobile devices back to the server. When

the number of images to process becomes huge, the saved

computation cost could be substantial.

Experiment Setup. There are many image scaling algo-

rithms and they achieve different compression qualities with

different time consumptions. We wanted to measure JavaScrip-

t’s computation speed on this task in the real-world and did not

want to focus on the differences in efficiency of the algorithms.

We chose bicubic interpolation for image scaling on both the

browser and server. Bicubic interpolation is implemented in

JavaScript and C++ for both cloud and browser platforms.

Empirical Results. The experiment results in terms of

computation speed are shown in Table VIII.

Analysis of Results. To get a quantitive understanding

of the cost savings by offloading the image scaling tasks

to gray computing, we again use Facebook as an example

and make several assumptions: suppose the average resolution

of the photos being uploaded is 2 million pixels and the

average scaling ratio is 50%. 350 million uploaded photos

daily take 0.55s× 3.5× 108/3600h = 53, 472h for one EC2

m3.medium instance to scale and compress. With our utility

function U = Tcloud × I × Punit − k × I × Ptransferout −
O × Ptransferin − Crequest. Again Ptransferout = 0 because

the photos already exist in clients so there is no additional

cost for transferring data to the clients. We assume the client

processes 10 photos at a time (which takes around 10s on

a browser with average hardware). We choose a duplication

factor d = 1 since this application is not very sensitive

to security. O = 3.5 × 108 × 80k/106 = 2.8 × 104GB.

Crequest = 350 × 108/10 × 0.0075/104 = 2625. Therefore,

U = 53472 × 0.07 − 2.8 × 104 × 0.02 − 2625 = $558 is

saved each day by distributing this task to browsers, which

aggregates to $203,670 dollars a year.

There are many techniques that can be used to further

improve the quality of the resized images, such as sharpening,

filtering, etc. These techniques require additional computation

time (larger Tcloud), so the amount of money saved could be

further increased if these techniques are applied to uploaded

images.



TABLE VII: COMPUTING TIME COMPARISON FOR FACE DETECTION TASKS.

Image Dimension Number of pixels Size JS Computing Time(s) EC2 Computing Time(s)
960*720 0.69 million 82KB 0.67 0.56

1000*1500 1.5 million 156KB 1.05 1.30
1960*1300 2.55 million 277KB 1.70 2.15

TABLE VIII: COMPUTING TIME COMPARISON FOR IMAGE RESIZE TASKS.

Image Dimension Size
JavaScript Computing Time(s) EC2 Computing time(s)

Scaling ratio 30% 50% 70% 30% 50% 70%
960*720 82KB 0.14 0.35 0.66 0.18 0.22 0.25

1000*1500 156KB 0.29 0.69 1.34 0.43 0.45 0.58
1960*1300 277KB 0.48 1.2 2.08 0.66 0.73 0.86

Scenario 3: Sentiment Analysis

Overview. Sentiment analysis [17] refers to using tech-

niques from natural language processing and text analysis to

identify the attitude of a writer with respect to some source

materials. For instance, Amazon allows customers to review

the products they purchased. It would be useful to automat-

ically identify the positive/negative comments and rank the

products based on the customers’ attitude. Since the comment

context is sent to the websites’ visitors anyway, there will be

no extra cost incurred due to the data transferred from servers

to clients.

Experiment Setup. There are many machine learning algo-

rithms proposed for sentiment analysis in the literature [17].

We implemented a Naive Bayes Classifier, a simple but quite

effective approach, for sentiment analysis. The classifier takes

as input a user review and predicts whether the review is posi-

tive or negative. The classifier is implemented with JavaScript

for the browsers and Python for EC2. We trained our classifier

with a movie review dataset [18] containing 1000 positive and

1000 negative reviews. We collected movie reviews from the

Internet as test data and partitioned them into 10 files each of

size 200KB. Then we used the trained classifier to predict the

attitude of each review item and record the time needed.

Empirical Results. For an input size of 200KB, the predic-

tion time of browsers with JavaScript is 0.3s and for the same

task running on an EC2 m3.medium instance, the prediction

time is 0.7s.

Analysis of Results. For 1GB input data, the cost savings

is 1000/0.2 × 0.7/3600 × 0.07 = $0.07. To get a quantitive

understanding of how much money can be saved by offloading

the sentiment analysis tasks to gray computing, we use Face-

book as an example and make several assumptions: suppose

each user uploaded photo has an average of 1Kb comments.

Since Facebook has 350 million photos uploaded daily, there

is 350×106×1/106 = 350GB comments in total. If Facebook

wants to analyze the attitude of every comment of the photos,

the cost is 350× 0.07× 365 = $8943 a year.

Scenario 4: Word count

Overview. Word counting is the classic use case that is

used to demonstrate big data processing with MapReduce.

Word counting requires determining the total occurrence of

each word in a group of web pages. It is a task that requires

a relatively large amount of textual input with a very small

amount of computational work.

Experiment Setup. We compared the cost-effectiveness of

running a word count task in JavaScript versus the Amazon

Elastic Map Reduce (EMR) service (using a script written in

Python). The Amazon EMR experiment was configured with

1 master node (m1.medium) and 2 slave nodes (m1.medium).

TABLE IX: COMPUTING TIME COMPARISON FOR WORDCOUNT.

Input size Browser (JavaScript) Amazon EMR
18MB 13.7s 94s

380MB 3min 6min

Empirical Results. The experiment results in terms of

computing speed are shown in Table IX. For 1GB of input,

Crequest is very small, the cost savings is Ccloud−Ctoclient =
1/0.38× 6/60× 0.109× 2− 0.085× 2.5 = $− 0.16.

Analysis of Results. As can be seen, the cost saving is

a negative number which means the value of the computed

results is less than the cost of transferring the text data to

the clients. Word counting is not an ideal application for

distributed data processing with gray computing because it

is a data intensive but computationally simple task. However,

if the word count was being run on web pages delivered to

the clients, the data transfer cost would not be incurred and it

would be as cost effective as Scenarios 1 and 2.

Scenario 5: Rainbow Table Generation

Overview. The final use case was designed to analyse the

gray computing power that could be wielded by an attacker

if they compromised a large number of websites and began

distributing malicious data processing tasks in their web pages.

For the malicious use case, we focused on password cracking

with rainbow tables, which has become a common type

of work performed by cyber-attackers on data stolen from

websites. A rainbow table [19] is a precomputed table for

reversing cryptographic hash functions, usually for cracking

password hashes. These tables are used to recover the plaintext

passwords that are stored as hashes in databases.

To distribute the tasks, the central server only needs to send

a start string and end string of a range of the password to the

clients. The size of input is extremely small and can almost

be ignored. Therefore, Ctoclient = 0.

Experiment Setup. The browser environment is the same

as described in Section IV-A. For the cloud instance, we

implemented the rainbow table generation algorithm in C++

and compiled with g++ 4.8.2.



Empirical Results. The results of the experiment are shown

in Table X. Generating 900,000 hashes on a desktop’s browser

using ported JavaScript took 4s. Generating the same hashes

on an Amazon EC2 m3.medium using C++ took 3s.

TABLE X: COMPUTING TIME COMPARISON FOR GENERATING A RAINBOW

TABLE.

Input size Browser(native JS) EC2(c++) Browser(ported JS)
9E5 90s 3s 4s

Analysis of Results. Suppose an attacker compromises

websites with a cumulative traffic of 1 million visitors per

day and an average browsing time of 15 minutes. The attacker

would be able to wield the equivalent of 106 × 0.25hour ×
0.8/2 × 365day = 3.65 × 107 computing hours a year in

a browser. To accomplish the same task with an Amazon

EC2 m3.medium instance for a year, the yearly cost would

be 3.65×107/4×3×0.07$/hour = $1, 916, 250. Crequest =
(2.5+2)×106×900/10×365×0.0075/104 = $110, 869. With

our utility function U = Ccloud−O×Ptransferin−Crequest,

the yearly cost saving U is around $1.8Million. The near-

native computing speed of JavaScript with browser and the

low data transferred per unit of computational work makes

this an effective processing task to distribute.

V. RELATED WORK

The term “volunteer computing” was first used by Luis

F. G. Sarmentan [20]. He developed a Java applet-based

volunteer computing system called Bayanihan [20] in 1998.

SETI@Home [21] was one of the earliest projects to prove the

practicality of the volunteer computing concept. SETI@Home

was designed to use the numerous personal computers of the

public to process vast amounts of telescope signals to search

for extraterrestrial intelligence. Some of SETI@Home’s suc-

cessors include Folding@Home [22], which simulates protein

folding for disease research, and BOINC [23], which is a

platform to hold various themes of research projects. What

these projects share in common is that they all focus on non-

profit scientific computing and they all require users to install

a specialized client-side software in order to participate in the

projects. Whereas in our paper, we analyze the highly volatile

browser-based data processing domain and extend beyond

scientific computing to websites’ business operations.

A number of researchers have investigated volunteer com-

puting with browsers. The primary advantage of a browser-

based approach is that the user only needs to open a web page

to take part in the computation. Krupa et al. [24] proposed

a browser-based volunteer computing architecture for web

crawling. Finally, Konishi et al. [25] evaluated browser-based

computing with Ajax and the comparative performance of

JavaScript and legacy computer languages. In our work, we

add a comprehensive analysis of: 1) the architectural changes

to optimize this paradigm for websites served from cloud

environments; 2) the impact of page-view time on scheduler

efficiency and data transfer; 3) a cost model for assessing the

cost-effectiveness of distributing a given task to browser-based

clients as opposed to running the computation in the cloud; and

4) present a number of practical examples of data processing

tasks to support website operators, particularly social networks

and e-commerce.

MapReduce [1] is a programming model for large par-

allel data processing proposed by Google, which has been

adapted to various distributed computing environments such

as volunteer computing [26]. There are some early prototypes

implementing MapReduce with JavaScript [6]. Lin et al. [26]

observed that the traditional MapReduce is proposed for ho-

mogeneous cluster environments and performs poorly on vol-

unteer computing systems where computing nodes are volatile

and with high rate of unavailability, as we also demonstrated

with our derivation of µ in Section III-E. They propose MOON

(MapReduce On Opportunistic eNvironments) which extends

Hadoop with adaptive task and data scheduling algorithms

and achieves a 3-fold performance improvement. However,

MOON targets institutional intranet environments like student

labs where computer nodes are connected with a local network

with high bandwidth and low latency. We focus on cloud and

Internet environments with highly heterogeneous computation

ability, widely varying client participation times, and non-fixed

costs for data transfer and task distribution resources.

VI. CONCLUSION

Every day, millions of users opt into allowing websites to

use their browsers’ computing resources to perform computa-

tional tasks, such as form validation. In this paper, we explore

the feasibility, cost-effectiveness, user experience impact, and

architectural optimizations for leveraging the browsers of

website visitors for more intensive distributed data processing,

which we term gray computing. Although previous research

has demonstrated it is possible to build distributed data pro-

cessing systems with browsers when the web visitors explicitly

opt into the computational tasks that they perform, no detailed

analysis has been done regarding the computational power,

user impact, and cost-effectiveness of these systems when

they rely on casual website visitors. The empirical results

from performing a variety of gray computing tasks, ranging

from face detection to sentiment analysis, show that there is

significant computational power in gray computing and large

financial incentives to exploit it. Due to these incentives and

the vast potential for misuse, we believe that much more

research is needed into the security and ethical considerations

around gray computing.

As part of the analysis in this paper, we derived a cost

model that can be used to assess the suitability of different

data processing tasks for distributed data processing with gray

computing. This cost model can aid future discussions of ways

of legitimately incentivizing users to opt-into gray computing.

Further, we pinpointed the key factors that determine whether

a task is suitable for gray computing and provide a process

for assessing the suitability of new data processing task types,

which can help aid in guiding the design of gray computing

systems and user incentive programs. We also presented a

number of architectural solutions that can be employed to ex-

ploit cost and performance asymmetries in cloud environments

to improve the cost-effectiveness of gray computing.
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